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This paper examines the streamwise dispersion of passive contaminant molecules 
released in a time-dependent laminar flow through a tube in the presence of boundary 
absorption or a catalytic wall reaction, which causes a depletion of contaminant in 
the flow. A finite-difference implicit scheme has been used to solve the unsteady 
convective-diffusion equation for all time. Here it is shown how the mixing of the 
cross-sectionally integrated concentration of contaminant molecules is influenced by 
the frequency of pressure pulsation and the heterogeneous reaction at  the boundary. 
The behaviour of the dispersion coefficient due to the shear effects of steady, 
oscillatory, and the combined action of steady and periodic currents have been 
examined separately. The comparison reveals that for all cases the dispersion 
coefficient asymptotically reaches a stationary state after a certain time and it 
decreases with the absorption parameter. The increased wall absorption causes 
negatively skewed deviations from Gaussianity . 

1. Introduction 
In  his classic paper, Taylor (1953) discussed the dispersion of a passive Contaminant 

in a viscous liquid flowing in a circular pipe under laminar conditions. Aris (1956) 
subsequently presented a method of moment analysis of dispersion in steady flow 
and discussed the asymptotic behaviour of the second moment about the mean. 

Aris (1960) used his method of moments to analyse the longitudinal dispersion 
coefficient of a solute in an oscillatory flow of a viscous incompressible fluid within 
an infinite tube under a periodic pressure gradient. However, his analysis of the 
dispersion coefficient was limited to asymptotically large time after the injection of 
the solute. An exact solution of the diffusion equation, which was linear in the axial 
coordinate, was obtained by Chatwin (1975) to study the dispersion of passive 
contaminant molecules along the axis of the tube, in which flow varied periodically 
with time. His assumption on linearity of the concentration solution was adequate 
for large time. Purtell (1981) analysed the effect of flow oscillation (without a time- 
mean velocity) due to the periodic pressure gradient on the axial diffusion of a solute 
in a pipe, considering a small perturbation to the oscillation Reynolds number 
Re ( =  wR2/v) ,  where w is the frequency of oscillation, R is the radius of the tube, and 
v is the kinematic viscosity of the fluid. His attention was restricted to the initial 
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distribution of solute, a step function. Smith (1982, 1 9 8 3 ~ )  analysed the variance and 
the longitudinal dispersion coefficient during the initial time in the oscillatory 
current. He showed that the dispersion coefficient was sometimes negative due to 
the reversing flow in the velocity profile, which means that the concentration of 
contaminant may contract and expand periodically; and he also pointed out the 
sensitivity of time of release of contaminant during a cycle. Yasuda (1984, 1989) 
presented a method to escape the negative dispersion coefficient during the initial to 
stationary stages in both steady and oscillatory current by proposing a new 
definition of the vertical average of the dispersion. 

Some important characteristics of time-dependent laminar flows may be found in 
Jimenez & Sullivan (1984), who studied the growth of rate of variance by using the 
probabilistic approach proposed by Taylor (1921). Mukherjee & Mazumder (1988) 
presented an analytical solution for studying the all-time evolution of the central 
moments of dispersion of passive contaminant molecules in the shearing current due 
to the combined effect of steady and periodic flows within a conduit of uniform cross- 
section. They studied the contribution of oscillation of fluid to variance and the 
longitudinal dispersion coefficient during the initial to  stationary stages within a 
tube, given a uniform initial distribution of contaminant cloud and a large Pdclet 
number. Their analysis was carried out in terms of the combined action of steady 
flow due to the mean pressure gradient and the unsteady flow due to the imposed 
perturbation. 

Our main objective of the present paper is to  explore the effect of absorption or 
heterogeneous first-order reaction at the boundary on the streamwise dispersion of 
contaminant cloud released in both steady and oscillatory flows in a tube. More 
precisely, we study, for all time, how the material spreads due to the shear effect 
caused by the combined action of flow and diffusion in the cross-sectional plane 
about its mean position, the speed of the slug’s centre of mass, the degree of 
absorption in the boundary, and the mean concentration distribution’s approach to 
Gaussianity. A numerical scheme (Crank-Nicolson type) has been adopted to study 
the integral moment equations for all time periods. The mean concentration 
distribution is approximated by Edgeworth series expansion using the first four 
central moments, when the contaminant is initially uniform over the cross-section 
and the Pdclet number is large. The results of this study are likely to be of some 
interest in laminar unsteady flow reactors determining the rates of chemical reaction 
taking place in the fluid. The significance of the boundary absorption problem can 
also be thought of as being deposition, transport across a semipermeable membrane, 
and depletion of pollutants released from the chemical plants. Fischer et ul. (1979) in 
particular have drawn attention to  the longitudinal dispersion of non-conservative 
decaying substances, such as biochemical oxygen demand in sewage effluent or heat 
in a power station discharge. 

Gupta & Gupta (1972) studied the phenomenon of dispersion of reactive 
contaminants in a liquid flowing through a channel in the presence of a first-order 
heterogeneous chemical reaction using Taylor’s ( 1953) conceptual rflodel for 
asymptotically large time. Gill, Ruckenstein & Hsieh ( 1975) explored the generalized 
dispersion model proposed by Gill & Sankarasubramanian (1970) to study a first- 
order reaction catalyzed by the wall of a laminar flow tubular reactor, but they 
confined their analysis to the steady flow and to the case of asymptotic behaviour 
for large time. Smith (1983b) discussed the effect of the boundary reaction on the 
longitudinal dispersion in shear flows using the delay-diffusion equation. An attempt 
was made by Barton (1984) to explain the dispersion of reactive contaminants in pipe 
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Poiseuille flow in the presence of the boundary reaction for asymptotically large 
time. Purnama (1988) also analysed the case of reaction and retention at flow 
boundaries when the contaminant is chemically active. 

2. Mathematical formulation 
Consider an unsteady fully developed viscous, incompressible, axisymmetric 

laminar flow in a straight circular pipe with uniform cross-section of radius R .  The 
dimensional radial and axial coordinates are r‘ and z’, respectively. The flow is driven 
by an axial pressure gradient that varies periodically with time. The mean axial 
pressure gradient (P,.) is perturbed by a fluctuation in which the longitudinal 
pressure gradient (a,p) satisfies the following equation : 

-P-la,,p =P,,(i+eeiwt’), t’a 0, (1) 

where EP,. and w are the amplitude and frequency of pressure pulsation, respectively, 
p is the density of fluid, and t’ is the time. 

The NavierStokes equations thus reduce to 

= - p -  1 a, p + vr’-1 ar, (p’ar.) U’ (2) 

u’ = 0 at  r‘ = R and a , d  = 0 at r’ = 0. (3) 

and the boundary conditions for the flow are 

Here u’(t’,p’) is the velocity parallel to the axis (r’ = 0) of the tube, which includes 
both steady and oscillatory parts of the flow, and v is the kinematic viscosity of the 
fluid. 

When a slug of a reactive solute is released in the above time-dependent flow in a 
tube with first-order reaction at the wall (assumed to be catalytic), the concentration 
C(t ,  r ,  z )  of the reactive solute, with constant molecular diffusivity D,  satisfies the 
dimensionless convectivdiffusion equation of the form 

a , C + P e [ u o ( r ) + u l ( t , r ) ] a Z C  = r-la,(ra,)C+a,“C, (4) 
where the dimensionless quantities are given by 

RU u‘ P e = - .  
u 1 = 3 7  D 

r = -  r’ z = -  2’ t = -  Dt’ 4 R 2 ’  u o = c ,  R ’  R ’  

Here u,,(r) is the steady velocity, ul ( t , r )  the periodic velocity due to the imposed 
perturbed pressure gradient, U is the reference velocity, and Pe is the PBclet number 
that measures the relative characteristic times of the diffusion process (R2 /D)  to the 
convective process (RIU) .  The initial and boundary conditions are 

C(0, r ,  2) = &4, 
a,C+,!E = 0 at r = 1,  

C finite a t  all points, 

z”aF+O as IzI - tco for m , n = 0 , 1 , 2  ,..., 

rC(O,r,z)drdBdz = 1, 

where 6(z)  is the Dirac delta function and ,8( = p’R) is the first-order reaction rate 
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parameter corresponding to  the catalyt,ic reaction a t  the wall. The case /3 = 0 is 
usually referred to  as the dispersion of passive contaminant that is neutrally buoyant 
and chemically inert. 

The flow velocities uo(r) and ul(t, r )  in ( 4 )  are obtained by solving ( 1 )  and (2) subject 
to  the condition (3) ,  given by Sex1 (1930) and Uchida (1956) as 

where 
u(t, r )  = uo(r)  +ul(t, r),  

u,,(r) = (1  - r*) ,  

exp (ia Sc t ) ,  1 4ie [ Jl,(r( - icx);) 
a Jo ( - ia); 

ul(t,r) = -- 1 - 

u = u'/U is the dimensionless axial velocity (U being the time-averaged axial 
velocity P, ,R2 /4v ) ,  a = w R 2 / v  is the dimensionless frequency parameter or oscillation 
Reynolds number, Sc = v/D is the Schmidt number, and Jo denotes the Bessel 
function of order zero. The first term of right-hand side of (6) represents a 'pipe 
Poiseuille flow ' and the second term corresponds to the unsteady part of the flow 
(Schlichting 1966). Here, of course, the physical significance is attributed only to the 
real part. This velocity profile is more general than that assumed by other researchers 
to  study the dispersion process. 

Following the method proposed by Aris (1956), we define the pth moment of the 
distribution of the solute in the filament through r a t  time t given by 

C,(t, r )  = zpC(t,  r ,  z )  dx, rm (7) 

and the pth moment of the distribution of the solute over the cross-section of the 
tube 

M,(t) = cp = IT d 8 l  rC,(t ,  r )  dr. (8) 

Multiplying (4) by z p  and integrating with respect to z from - co to + co with 
suitable conditions, one gets 

atCp-r-13r(Tar)Cp = pPeu(t,r)C,_,+p(p-l)C,_,, (9a)  

Cp(O,r )  = 1 ,  i3,Cp+/?C, = 0 at r = 1. ( 9 b )  

d, M ,  + 2/3C,(t, + 1 ) = p Pe u( t , r )  C,-l + p@ - 1 ) G, W a )  

M,(O) = 1 for p = 0, M,(O) = 0 for p > 0, ( l o b )  

After integration with respect to r and 8, (9a, b) become 

where an overbar denotes the cross-sectional mean. The p th  integral moment of the 
concentration distribution can be defined as 

where 
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is the ‘centroid ’ of the cloud and jjj Cdv = Mo represents the total mass of reactive 
solute in the whole volume of the tube, which decays gradually with time due to 
the reaction a t  the wall. The global moments of concentration defined by (11 ) serve 
as simple and physically meaningful descriptors of the overall behaviour of the slug. 
For example, the first moment (z,) measures the location of the centre of gravity of 
the slug movement with the mean velocity of the fluid particles, initially located at 
the source; the second central moment (vz) about the mean (z,) can be related to the 
dispersion of the slug about its mean position; and the third (v3) and fourth central 
moments ( v4) respectively measure the symmetry and peakedness of the distribution 
of the slug about its mean. 

The expressions of central moments thus can be obtained from (11) as 

The aim of the analysis is to solve the system of differential equations (9) and (10) 
subject to the given initial and boundary conditions for p = 0, 1 ,2 ,  .... For a special 
case (p  = 0 in (9b)), the method of solution of the moment equations for a periodic 
flow was given by Mukherjee & Mazumder (1988) by suitably modifying the 
treatment of Barton (1983), who studied only a steady current. The solution was 
based on the method of separation of variables, which depends on a certain 
eigenvalue problem with a discrete spectrum of eigenvalues. Our method provided an 
algorithm for the exact analysis of the subsequent central moments, but we 
restricted our attention only to the variance, that is, the second central moment. The 
solution was obtained for the combined action of the steady and the periodic 
currents ; and the formal expression for the apparent dispersion coefficient is 
presented as (see equation 4.8 of Mukherjee & Mazumder 1988) 

4(2a; + iaSc) A, eiaSct 

af(a; + iCrSc) 

A; eQiaSct 

+ a; + iasc 
- 

where A,  = - Sic( - ia); J,( - ia)i/a(a; + ia) Jo( - ia);. 

and a,,j = 1,2 ,  ... are the roots of the Bessel function J ,  of order one. The right-hand 
side of (13) represents the dispersion coefficients due to the shear effect individually 
generated by the steady current, the oscillatory current, and the combined action of 
the steady and oscillatory currents. In the case of steady flow (c = 0) the expression 
for D, is in complete agreement with Barton (1983). However, if we ignore the steady 
flow u0(r )  in the velocity profile (6), then D, is given by 

which is only for the shear effect due to the oscillatory current. The dispersion 
coefficient due to the periodic current was not studied separately by Mukherjee & 
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Mazumder (1988). This result is consistent with the work of Chatwin (1975) for 
asymptotically large time after the release. 

3. Numerical scheme 
Owing to the complexity of analytical solutions of moment equations (9a)  subject 

to the initial and boundary conditions (9b) for /3 =k 0, a finite-difference scheme has 
been adopted to study the dispersion phenomena. This scheme, essentially based on 
the Crank-Nicholson implicit approach, was considered not to have the stability 
limitations of other implicit schemes (Lapidus & Pinder 1982). For a consistent set 
of initial information along the radial direction, (9a) can be used to  ‘march’ in time 
to obtain the evolving mean concentration field. Thc finite-difference formulation of 
the above equations is similar to  the scheme used by Mazumder & Das (1989). They 
applied an implicit two-level time integration scheme with second-order accuracy in 
the marching direction and a third-order accuracy along the radial direction. In 
particular, the derivatives in the marching direction have been replaced by a 
backward difference. Central differencing is used in all derivatives in the radial 
direction and then the resulting difference scheme is implicit. The finite-difference 
representation of derivatives and the various terms can be written at mesh points 
( i  + 1 , j )  where i = 0 corresponds to the time t = 0, and j = 0 corresponds to the axis 
of the pipe, r = 0. The resulting finite-difference equations become simultaneous 
linear algebraic equations with a tridiagonal coefficient matrix : 

P, c, (i + 1 ,  j + 1)  + &, c, (i + 1,  j) + R, c, (i + 1 ,  j - 1 ) = s,, 
where P,, Qj ,  R,, and S, are the matrix elements and i + 1,  j are the indices a t  the grid 
point considered. The tridiagonal coefficient matrix arising from (15) can be solved 
by the well-known method of the Thomas algorithm, which is basically a variation 
of Gaussian elimination (Anderson, Tannehill & Pletcher 1984). When applied to the 
system, the Thomas algorithm necessitates an iteration procedure and the resulting 
difference equation here is backward. It is clear that the system of algebraic 
equations is readily solved provided the initial and boundary conditions are 
specified. The finite-difference analogues of the entry and boundary conditions (9b)  
are 

1 for p = 0 
0 for p 2 1, 

a t  the axis, and 

1 
2Ar (17) -[C,(i+1,N+1)-C,(i+l,N-l1)]+pc,(i+l,N) = 0 

a t  the boundary for p 3 0. 
To integrate (lOa), we employ Simpson’s one-third rule on the right-hand side, 

considering the radius of the pipe as a ten-layer model. The steps of computations 
are as follows: the time-dependent axial velocity u is computed from (6); the 
concentration C, is calculated on knowing the values of u at grid point ( i + l , j ) ;  
finally, M ,  is computed from (10a) and (lob) after substituting the values of u and 
C, in the corresponding grid point. The above procedure is followed recursively in the 
marching direction. Numerical experimentation has been done for three different 
velocity profiles to separate the individual dispersion processes due to the steady, the 
periodic and, for comparison, the combined effect of the steady and periodic currents. 
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For the steady current, a mesh size (At = 0.0001, Ar = 0.1) gives satisfactory 
results when checked for accuracy by repeating the computations for smaller 
mesh sizes. The present scheme is linearly stable for a finite value of n, where 
n = At/ (Ar)2  = 0.01, because of its implicit character. For the oscillatory current, a 
mesh size (At = 0.00001, Ar = 0.1) gives results for frequency parameter a = 0.5, 1.0, 
and 4.0. The value of n is 0.001. In particular, for a = 1.0 and 4.0, the smaller time 
interval is needed to  obtain the oscillatory behaviour in the dispersion process. For 
the combined effect of steady and oscillatory currents a mesh size (At = 0.00001, 
Ar = 0.1) gives satisfactory results for E = 1.5, and a = 0.5,1.0, and 4.0. The value of 
n is 0.001. 

4. Discussion of integral moments 
A numerical check was made on the integral moments (variance, skewness) of the 

concentration distribution and the longitudinal dispersion coefficient for the steady 
flow [u = uo(r), u , ( t , r )  = 01 in the absence of boundary absorption or chemical 
reaction (p= 0). The results are in good agreement with those of Gill & 
Sankarasubramanian (1970), Barton (1983), Barton & Stokes (1986), and Mukherjee 
& Mazumder (1988). 

When p = 0, the solution of (1Oa) subject to  (lob) is given by 

M,(t,p) = 1 -2p C,(t, + 1)  dt, (18) I 
where C,(t, + 1 )  is found from (9a) .  Equation (18) represents the total mass of 
reactive solute, which is a function of /3 and t .  Figure 1 shows how the total amount 
of reactive material is depleted over time for a given reaction parameter p. When 
/3 = 0, Mo(t,  0) = 1, which represents a constant mass. As expected, dimensionless 
mass M,(t, p ) / M o ( p  = 0) is a decreasing function of p and t .  

For p = 1, (10a) and ( l o b )  can be written as 

(19) 

We focus our attention on the overall transport rate of contaminant molecules, the 
mean longitudinal displacement (2,) of the dispersive material moving with the mean 
velocity of the fluid particles have been presented separately for steady, periodic and 
the combined action of steady and periodic currents. 

Figure 2 shows the centroid displacement ( zg )  for p = 0,1,3,5,  and 10. For a given 
p, it is observed that the centroid displacement (2,) increases linearly with time and 
it advances for a given time t ,  and the mean position of material moves more rapidly 
than the average velocity a,, when the reaction takes place. Figure 3 (a ,  b )  shows the 
first moment (2,) for a = 1.0, which measures the centre of gravity of the slug moving 
cyclically with the same frequency as the oscillatory current. The amplitude of 
oscillation increases with the boundary reaction p;  that  is, the mean displacement of 
the slug increases with each complete period of oscillation. The relative mean 
longitudinal displacement, z,/[x,(p = O ) ]  - 1, for -the combined effect of steady and 
oscillatory currents (uo(r)  +u,(t ,  r ) )  increases directly up to  a certain period of time, 
then it moves asymptotically to a constant value (figures 4a, b) .  This phenomenon 
may be explained by the boundary absorption causing the centre of the slug to move 
with a higher velocity. Within a given time, however, the movement of the centre of 
the slug is directly proportional to  the boundary absorption. Figure 5 shows the 

I d&,+2pC,(t, + 1) = W u , ( r ) + u , ( t ,  r)IC,, 

M,(O) = 0. 
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0.8 
t 

FIGURE 1. Fraction of total slug retained in the flow. 

FIGURE 2.  The centroid displacement (2,) as a function of time t 
for the steady flow, when Pe = lo3. 

temporal variation of deposition or absorption (mass/length) at  the boundary for 
various values of p, and u = 1.0. The absorption (mass/length) at  the boundary can 
be expressed as 

where Mo(t,) and zg( t i )  respectively represent the total mass and the mean 
displacement of the slug at the ith time period. 

Figure 6 (a-c) presents plots of the variance (In v2) of the longitudinal concentration 
distribution against the dispersion time (lnt) for 01 = 0.5, 1.0, and 4.0 and = 0, 3, 
and 10, when 8 = 1.5, and S c  = Pe = lo3. It is seen from (9a)-(12a) that the second 
central moment (vz) is essentially based on the dispersion due both to the 
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t 

FIGURE 3. The centroid displacement (2,) due to the periodic flow, when Pe = Sc = lo*, u = 1.0: 
(a) small time, (a) large time. 

longitudinal diffusion and to the interaction of current and lateral diffusion. Figures 
show that for a given value of /3, In v2 increases rapidly with time. At low frequency, 
In v2 increases in a wavy way, whereas at high frequency there is no such effect. The 
shear effect due to a periodic flow is small compared with that of a steady flow. Again, 
for fixed a, variance decreases with /3, which reflects the combined effects of the 
lateral distribution of the remaining concentration and the velocity. 

h i s  (1956) showed in his simplified model that for asymptotically large time the 
rate of growth of variance of the distribution of the solute in a steady flow through 
a tube is proportional to the sum of the molecular diffusion coefficient D and the 
apparent diffusion coefficient u2R2/48D, where U is the average velocity. According 
to Aris, the rate of growth of variance v2( t ) ,  for the present case, can be written as 

(21) % = 2 + 2 Pe 2D,(Sc, E ,  a, /3, t ) ,  
dt 
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FIQURE 4. The relative mean displacement due to the combined shear effects (steady and 
unsteady) against time t for Pe = Sc = lo3, E = 1.5: (a) a = 0.5, ( b )  a = 4.0. 

where D,( ...) is the apparent diffusion coefficient. The first term of the right-hand 
side of (21 )  represents the longitudinal diffusion, and the second term represents the 
interaction between the convection and lateral diffusion. As the first term does not 
affect the convection, only the apparent dispersion coefficient is discussed for each 
velocity profile (steady, oscillatory, and the combined effect of steady and periodic 
currents that flow in the same direction). 

When the flow is steady, D, is a function only of /3 and t .  The dispersion coefficient 
D, for steady current u,,(r) initially increases and asymptotically reaches a steady 
state ( N 0.005) at dimensionless time t z 0.3. For a given time t ,  D, decreases with 
the boundary absorption. 

For the oscillatory current ul(t ,  r ) ,  D, mainly depends on the frequency of 
oscillation a, the Schmidt number Sc, the dispersion time t ,  and the absorption 
parameter p. Now a = wR2/v  = 2 x ( R 2 / v ) / T ,  which is a measure of the ratio of the 
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t 

FIGURE 5. Deposition (mass/length) at the boundary due to  combined shear effects 
for 8 = 1.5. a = 1.0. 

time ( R 2 / v )  taken for viscosity to smooth out the transverse variation in vorticity to 
the period of oscillation (l/w), or the ratio of the pipe radius R to the Stokes-layer 
thickness (v/w)i. A small value of a implies a large viscous layer near the wall 
compared with a small inviscid core near the centre or, alternatively, a large 
oscillation period compared with viscous diffusion time and therefore quasi-steady 
flow, and vice versa for large a. The Schmidt number Sc( = v /D)  is the ratio of viscous 
diffusion and molecular diffusion ; and aSc = (B2/D) 2 x / T ,  is a measure of the ratio 
of the characteristic time of transverse diffusion to the period of oscillation. The 
variations of D, with time in the oscillatory current u,(t, r )  are plotted for various 
values of /3 and Sc = 1000 in figure 7 for a = 0.5, figure 8 for a = 1.0 and figure 9 for 
a = 4.0. In  this paper, values of the characteristic transverse mixing time ratio 
(T, = aSc/2n) for low, medium, and high frequencies are derived as 80, 159, and 637, 
respectively. From the figures, it can be seen that D, in the oscillatory flow changes 
cyclically with a double-frequency period, and it reaches a stationary state after a 
certain time t ,  which is related to the cross-sectional mixing time R 2 / D .  In the case 
of low frequency, D, reaches a stationary state earlier than for high frequency. The 
amplitudes of oscillation of D, during the first and second half of the period of 
oscillatory flow are approximately equal. But in the case of high frequency, the 
period of oscillation is so short that D, initially varies almost cyclically with the same 
frequency as the periodic current and then fluctuates with a double frequency. The 
longitudinal dispersion coefficient is more significant during the first half of the 
period than the second one. However, this situation completely stabilizes after a 
certain time ( t  > 0.3) and then with oscillation the solute disperses a t  a fairly uniform 
rate. 

The dispersion coefficient D, changes cyclically with time even in the stationary 
state (Yasuda 1984). From these studies, D, in the oscillatory current was found to 
be much smaller than D, in the steady current. According to the work on longitudinal 
dispersion in an oscillatory current, the shear effect due to the periodic flow becomes 
asymptotically smaller than that of a steady current when the characteristic time of 
lateral diffusion is much larger than the period of oscillatory current (Okubo 1967 ; 
Holley, Harleman & Fischer 1970). It may also be noted that D, decreases with the 
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FIGURE 6. The temporal variation of variance of concentration distribution due to combined 
shear effects for E = 1.5, Pe = Sc = lo3: (a) a = 0.5, ( b )  a = 1, (c) a = 4. 
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FIUURE 7. The dispersion coefficient D, due to periodic flow for (a) small time, ( b )  medium time, 
and (c) large time, when Pe = Sc = los, a = 0.5. 
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FIGURE 9. As figure 7 but for a = 4. 
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FIQTJRE 10. The dispersion coefficient D, and average dispersion coefficient 0, (----) due to combined 
steady and periodic currents for E = 1.5, OL = 0.5, Pe = Sc = los: (a )  small time, ( b )  medium time, 
and (c) large time. 
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t 

frequency a ; that is, the shear effect due to high frequency of the oscillatory current 
on D, is negligible, but is more pronounced on the steady current or quasi-steady 
current. The fluctuations in the velocity profiles induce the positive and negative 
dispersion during the period of oscillation : owing to the flow reversal in the period, 
the material would be carried back with the flow to form the negative dispersion. 
Therefore, the dispersion of material contracts at each flow reversal during the period 
of oscillation (Smith 1982). Further, the dispersion coefficient D, for a given 
frequency of oscillatory current decreases with increases in reaction parameter /3. 

For comparison, the combined shearing effect of steady and oscillatory currents 
(u, + ul) on D, have also been studied for E = 1.5, a = 0.5, and 4.0, and /3 = 0, 1,3,  and 
10. Figures 10 and 11 show the temporal variation of D, due to the combined shear 
effects for low and high frequencies of the oscillatory flow. When these are compared 
with D, due to the shear effect of a periodic current, D, no longer has the double- 
frequency period. In  fact, the amplitude of oscillation increases initially up to certain 
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FIGURE 12. The dispersion coefficient D, for /3 = 0, a = 1.0: (a) small time, ( b )  medium time. 

time, and then becomes stable for a long time, which means that D, due to the steady 
flow plays a more significant role than D, due to the oscillatory flow. As the periodic 
flow moves with the steady flow in the same direction, the effect of frequency of 
oscillation of the periodic current (due to the perturbed pressure gradient) becomes 
less significant. It follows that just after the injection of reactive material, it tends 
to disperse longitudinally a t  a rate which increases with time. This oscillatory nature 
of D, makes it worthwhile to concentrate on the averaged longitudinal dispersion 
coefficient (D,) over a period of oscillation (ti, ti+l) where 

For a given frequency of oscillation a, D, is always positive for all values of /3 (figures 
10 and 11). For a given value of a, D, decreases with increase in /? for all cases. Thus, 
one would expect from the physical point of view that the increase in /? leads to an 
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FIQURE 13. The skewness coefficient (I2) of the concentration distribution due to oscillatory 
flow for Pe = Sc = los. a = 1.0. 

increasing number of moles of reactive material undergoing chemical reaction or 
absorption and changing the concentration distribution across the tube ; and hence 
there is a drop in D,. The decrease of D, with boundary absorption /3 corresponds to 
the increase of D, due to the boundary retention. The dispersion coefficient is larger 
when the partial amount of material is in the dead zone region and smaller when it 
is being is depleted due to the boundary absorption (Valentine & Wood 1977). 
Further, it may be pointed out (Yasuda 1989) that the decrease of dispersion 
coefficient D, corresponds to the increase of dispersion coefficient of suspended 
particles with the settling velocity. 

The analysis has also been performed for the time of cloud discharge taking place 
at different phases (u8ct = O,$c ,  $x and n). Figure 12(a, b) shows the temporal 
variation of D, for u = 1.0, /3 = 0 and aSc t = wt’ = 0 and x .  It is important to note 
that although the time of discharge is different, eventually the dispersion coefficients 
asymptotically coincide with each other (Smith 1983~) .  
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FIGURE 15. As figure 13 but for the kurtosis coefficient (pa). 

The coefficients of skewness (p,) and kurtosis (P,) are the important criteria to 
measure the degree of symmetry and peakedness, respectively, of the concentration 
distribution. They are used to examine the deviations from Gaussianity. If the 
concentration distributions are exactly Gaussian, both coefficients will be zero and 
can be defined as follows: 

/3, = v,/vi and /3, = v4/vi  - 3. (23) 

Figure 13(a, b) shows the temporal variation of the coefficient of skewness p2 for 
a = 1.0 and various values of p. It can be seen that the coefficient of 18, in the 
oscillatory current changes cyclically with a single-frequency period and decreases 
with time t .  In a complete period of oscillatory current, p2 is approximately zero, and 
hence the concentration distribution is essentially symmetrical. During one half- 
period of oscillation, the skewness increases with /3. Figure 14(a-c) shows the 
temporal variation of p2 due to the shear effect of the combined steady and 
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oscillatory flows. It can be seen that initially skewness decreases with time, moves 
asymptotically to  a constant value, and is almost zero for /3 = 3; whereas for p > 3, 
skewness changes from positive to negative. For /3 = 3, the concentration distribution 
is almost symmetrical after a time t > 0.2 for any value of a. It may also be noted 
that the symmetrical distribution of concentration in the case of an oscillatory 
current is obtained earlier than for a steady current. For each value o f p  > 3, there is 
a critical time t ,  for which skewness is zero; and it is interesting to note that as p 
increases, t ,  decreases. Whether skewness is positive or negative depends on the 
relative velocity and the remaining slug across the tube. Since the effect of wall 
reaction causes a depletion of contaminant in the lower-velocity region near the wall, 
most of the contaminant will remain in the central region of higher velocity. Thus, 
the small amount of contaminant near the lower-velocity region remains behind to 
form an extended tail (see Sankarasubramanian & Gill 1973 and Smith 1983b for 
steady flow) ; whereas in the absence of the boundary reaction, there is a forward tail, 
or positive skewness (see Taylor 1953 ; Gill & Ananthakrishnan, 1967 ; Mazumder & 
Das 1989 for steady flow). 

The temporal variation of the coefficient of kurtosis (p,) for the periodic current is 
shown in figure 15(a, b)  and is compared with that of the combined effect of the 
steady and oscillatory currents. In  the oscillatory current /3, is seen to vary in an 
oscillatory manner with the double-frequency period. Figure 16 (a*) shows p3 
against t for various values of a and p. It is seen for the low boundary reaction b3 is 
always negative, which represents a leptokurtic distribution. For a large reaction 
parameter, /3, changes from negative to  positive, and there is a certain time for which 
the distribution is normal before becoming platykurtic. Therefore, the comparison 
reveals that the coefficient of kurtosis of the distribution of concentration for the 
oscillatory flow is much smaller than that for the steady current or the combined 
steady and periodic currents; and hence the distribution may become Gaussian 
earlier for the oscillatory than the steady current. 

5. Mean concentration distribution 
If we can find few central moments of the concentration distribution, i t  is possible 

to approximate the mean concentration distribution C,(t, z )  within the tube using 
Hermite polynomials to represent non-Gaussian curves (Chatwin 1970 ; Mehta, 
Merson & McCoy 1974; and Guven, Molz & Melville 1984). The cross-sectional mean 
concentration C,(t, z )  is defined as 

where 
z - z g  

M,(t) = JlJCda. x = - 
(2v$ 

and Hi, the Hermite polynomials, satisfy the recurrence relation with H,(x )  = 1 as 

H,+,(x) = 2xH,(x)-2iHi-,(x), i = 0,1,2,  ... . (25) 

The coefficients a, are 

a, = 1/(2ncv,):, a, = 0, a2 = 0, a3 = 2h0/32/24, a4 = a,p3/96, (26) 

The mean concentration distributions C,(t, z )  are plotted against the axial 
distance (2-2,) for the combined action of the steady and oscillatory currents in 
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FIGURE 17. The mean concentration distribution along the tube for a = 1, E = 1.5, 
Pe = Sc = lo3; (a) /3 = 0 and ( b )  t = 0.2. 

figure 17 (a,  b )  for various values of /3 and t .  From figure 17 (a)  it can be seen that for 
fixed a and @ = O ,  the contaminant always remains constant and disperses 
longitudinally with time. As the dispersion time increases, the peak of the distribution 
decreases and the distribution tends to become flat. Figure 17(b)  shows the depletion 
of contaminant due to boundary absorption for a given time. For moderate /3 - 3, 
the distribution becomes symmetrical a t  time t > 0.15 (also see figure 14), whereas for 
large /3 > 3, it deviates from Gaussianity with a negatively extended tail. It is 
important to note that the mean longitudinal concentration distribution for the 
oscillatory flow becomes symmetrical even earlier than that of steady flow. The 
coefficients of skewness and kurtosis of the concentration distribution in the case of 
periodic flow are significantly lower than these coefficients for other flows. For steady 
flow ( E  = 0, p = 0) ,  the profiles of C,(t, z )  along the axis of the pipe agree qualitatively 
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with those given by Chatwin (1970) and Andersson & Berglin (1981) although the 
forms of C,(t,z) and the dimensionless axial coordinate defined by them differ 
markedly from ours. The above observations show a remarkable similarity between 
the mean concentration distributions due to boundary absorption in the combined 
shearing-current and due to the steady Poiseuille flow discussed by Barton (1984). 

6.  Conclusions 
We have presented a numerical solution to study the effect of boundary absorption 

of contaminant molecules on the shear effect due to steady, periodic, and combined 
steady and periodic currents through a tube; and we have compared some specific 
results due to different shear effects with particular emphasis on the role played by 
the first-order reaction at the wall. In particular, computations of higher integral 
moments C, (p = 2,3,4,  . . .) have been done to better understand the behaviour of 
the dispersion process over time. All the investigations have been done for flow 
velocities when the slug of reactive solute is released at maximum pressure a t  t = 0, 
given an initially uniform slug over the cross-section of the tube and a large PBclet 
number. The analysis has also been made for the time of release of the slug a t  
different phases (O,$R, ZIT, and R) and shows that the time of release is important at 
the initial stage but eventually the dispersion coefficients coincide with each other. 

Owing to boundary absorption, the amount of the slug retained in suspension 
decreases exponentially with dispersion time t ,  whereas the relative mean 
displacement of the slug increases immediately after the release up to a certain time, 
then it moves asymptotically to a constant value. 

The apparent dispersion coefficient D, reaches a stationary state in both steady 
and oscillatory currents over time. For high frequency of the periodic current, it 
appears that D, varies cyclically with almost the same frequency as the periodic 
current during the initial stage and then oscillates with a double-frequency period at 
large time ; whereas for low frequency of the oscillation D, varies cyclically with a 
double-frequency period from the start. It is important to note that the dispersion 
coefficient due to the oscillatory current is much smaller than that due to the steady 
one. Owing to boundary absorption, D, decreases for axiven frequency of the 
periodic current. The averaged dispersion coefficient (D,) over the period of 
oscillation due to the combined effect of the steady and oscillatory currents is always 
positive and decreases with increase in /3. 

The effect of boundary absorption on the mean concentration distribution causes 
deviations from Gaussianity. The tendency to develop positive or negative skewness 
depends on the differential convection and concentration distribution across the flow 
in the tube. It is worthwhile to mention that Gaussianity is achieved sooner for the 
oscillatory current than for the steady or combined shearing currents. The mean 
concentration distribution C,(t, x )  is almost Gaussian for ,!? = 3 and t > 0.15, whereas 
for large reaction parameters, it tends to negative skewness. Mean concentration 
profiles show how much of the slug remains, how fast the slug’s centre of gravity 
moves, and how it disperses due to shear effects. 
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